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An incessantly evolving landscape

Image: “Three-way tug of war” (https://www.momahler.com/ProArtistManifesto)
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Data management faces its most critical challenges



Game changer |: DATA

data from the WinterCorp Survey, the Digital Universe, EMC/IDC 2014 and Experian 2018
33% of data is inaccurate in some way
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Paradox: 50-fold growth impedes discovery



Data preparation is expensive
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biological disease sighatures

coupling
clinical measurements with validated biomarkers

Example: Alzheimer’s disease Lol
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Challenge:

“Real-time integration of heterogeneous data



clinical+genetic+timaging data = signature
Patients (CSV) Brain_GrayMatter (Binary)
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Using a traditional database

SELECT Phenotype, AACT, ...
FROM BrainRegions, Patients
WHERE BrainRegions.id== Patients.id AND

BrainRegions. amygdala.Vol > 0.3 AND ... filter O SCan
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scan ]
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Data must first be cleaned and restructured



Efficient data veracity

Correct ALL errors on ALL data: costly and unnecessary!
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Clean data adaptively during analysis



The hidden foe: Data Variety

71% of data scientists:
Analysis more difficult due to
variety, not volume [Paradigm4]
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Variety, Volume, Velocity
Importance [NVP Survey]

Variety
70%

But... impossible to create a data system
for all data and applications!



From LotsOfCode to NoCode

Engine adapts to data
Plug-in per data source
Build auxiliary structures

Interpretation

Overhead Generaté
Te n Type TOrS Reduce branches

v" Minimize function calls

v Pipelining

LEVM
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Codegen operators, continuously adapting engine



Harmonize useful data during execution

SELECT Phenotype, AACT, ...

FROM BrainRegions, Patients

WHERE BrainRegions.id== Patients.id AND
BrainRegions. amygdala.Vol > 0.3 AND ...

scan
CSV

filter
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RAW is a single engine for all data RAW

Just ask.

RAW Query is automatically split up for each data source.

Query
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Data is integrated transparently and on-demand.

Users think of all of their data as a unified database,
without preparation §



RAW is fast

Just ask.
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As queries run, RAW remembers accessed data and generated code.
It builds and maintains a virtual datalake with only the useful data.



Hide data heterogeneity

e Many different data formats MapReduce |
Engine elationa
@ DBMS
¥
e Modularity through virtualization ﬁ lﬁ ==
e Eliminate modularity overhead - mj’
— JIT code generation Reporting -~
Server Spreadsheet

Self-generated engine harmonizes data



Game changer Il: APPLICATIONS
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Ever-increasing number of concurrent queries

Data freshness bounded by ETL latency




Workload-conscious sharing

Global Plans
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Trial-and-error finds more and better sharing decisions



Hybrid Transactional and Analytical Processing

Transactions: task-parallel G¥®

— High rate of short-lived processes
— Mostly “point accesses” (high data access locality)

Analytics: data-parallel th

— Few, but long-running queries

s s WS S "0 -
Strong consistency is an invariant



Workload Isolation or Fresh Data?

Collocated workloads fight for resources
Isolated Hybrid-Access Elastic-Compute Collocated

Interference = better data freshness

No interference - better performance

Viable hybrid alternatives



Game changer Ill: HARDWARE
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Hardware conscious... or oblivious?



Selectively oblivious processing
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HetExchange: Heterogeneity-aware plans

SELECT SUM(a)
FROM T aggregate
WHERE b > 42

router

‘Logical plan gpu2cpu
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Operators encapsulate trait conversions
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HetExchange in a JITed engine

SELECT SUM(a)
FROM T aggregate
WHERE b > 42
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HTAP on heterogeneous hardware
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Transactions store fresh data
on CPU Memory

Data access protected by
concurrency control

Storage

Fetch Fresh Data

Real-time adaptive workload scheduling

Analytics access fresh data

through interconnect




Performance on CPU-resident data

SSB SF1000, 600GB CSV
working set: 92-138GB / query
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Hybrid throughput = 88.5% (CPU-only + GPU-only), on average



Heterogeneity is invisible

\Jirtualizat !

ion IaJ/e
)

Applications are portable and efficient



Increasing workload complexity

Diverse modern data problems iméé

— 10T, OCR, ML, NLP, Medical, Mathematics etc...

Commercial Al/ML

()

DBMS catch-up for popular functionality

— Human effort and big delays

Augmented
— Oblivious to out-of-DBMS workflows analytics
: : VN (=)

Vast resource of libraries an - K

— Authored by domain experts, used by everybody @ Combination of loT

Conversational and analytics

— Loose library-to-data-sources integration and optimization ,..tics and nLp

Need for systems that can “learn” new functionality



Network looks like a single machine

Similar intra-/inter-server interconnect bandwidth
Local memories and NUMA effects across devices
CPU-GPU: Capacity-Throughput
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Efficient use of heterogeneous interconnected devices



Data pipelines are unpredictable
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Taming heterogeneity through adaptivity -



Proteus: Runtime-optimized analytics
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Software is only as portable as its least adaptive component



Intelligent Real-time Systems

Incorporate change into native design.
Anticipate change and react, learning from errors.




