TERZO CONVEGNO NAZIONALE.

SISTEMI EVOLUTI PER BASI DI DATI
Ravello, 28-30 Giugno 1995

Techniques for the Analysis of
Conceptual Schemas

S.Castano (*), V.De Antonellis (**)
M.G.Fugini (+), B.Pernici (++)

*) Universita di Milano, (**) Universitad di Ancona
(+) Universita di Pavia, (++) Politecnico di Milano

e-mail- [castano,deantone fugini,pernici]@elet.polimi.it

Abstract

The problem of analyzing and classifying conceptual schemas is be-
coming more and more important due to the availability of large sets
of schemas from ezisting applications. The purpose of the analysis
and classification activities can be that of extracting information on
schemas of legacy systems in order to migrate them to new architec-
tures, to build libraries of reference conceptual components to be used

in building mew applications in a given domain, to analyze large sets
" of schemas In an organization to identify information flows and pos-
~sible replication of data. The paper proposes a set of techniques to
be adopted for schema classification and analysis: indezing techniques
to associate a description with a schema, techniques for abstracting
conceptual schemas based on schema clustering, and techniques for
schema comparison. The application of these techniques in the con-
tezt of reuse of conceptual components is briefly presented.

Keywords - Conceptual modeling, Schema analysis, Schema classifi-
cation, Schema comparison.

57

1 Introduction

In the last two decades, large sets of conceptual schemas have been

. . - coft-

constructed, both in conceptual database design pro;ects,.a.nctl. msso v

ware engine’ering projects, to describe data ufsed b{happl;zﬁeﬁl;s.has

i alyzing and classifying ese :

recent times, the need of analyzi i
i i ication contexts: to extract In

arisen in a number of applica ; g v
i der to migrate them to I

schemas of legacy systems In OT o
ild li o5 of reference conceptual mode

tures [1,7], to build libraries o : ceptual mode s atdl, to

icati i cation domain {19,10],

i ilding new applications in a given applica . n {1 :

. :ll;lze lfrge sets of schemas in an organization to identify 1x;forma.r

i icati the present pape

i i lication of data [13]. In .
tion flows and possible rep 3] b e e
‘s i.e.. on analyzing intensional in
we focus on schema analysis, 1.€., 01 : e s
i ; is techniques are being prop

iated with schemas; other analysis niques 2 sec

?;S:If; literature also to analyze data stored in existing databases, i.e.,

extensional information (data mining [4])-)

i is to presen

The purpose of this paper 18 :

schema :)na.{;/éiS' to associate keywords with schemas, t\?v compare

. tions. We assume

te abstract schema representa ass
s, e ptaal as in general, and most of the principles
nceptual schemas

general techniques for

to consider conceptual schem 1
i de set of co
nted below are applicable to a wide set o ; s

E:)‘;anonly used in conceptual database design, In requlrements'engl
neering, and in development methods presented in software engineer-
ing to s,upport the early phases of applicatllon d_evelopr;)‘;(:.::t l o de

i d, separately or in com ;
These techniques can be used, ely or I .
" rive from a schema, with human intervention limited as Iflar as posablsé
i is techniques can
igni f the schema. These analysis
significant properties 0 lysis techildnes P20 e
i ' f different purposes: for instance,
applied for 2 number o pos i e v
i identify interesting portions
uality of a set of schemas, to1 ' nas
?n a erository, to extract reusable subschemas from previous projec
esults. .) . -
’ We distinguish between techniques which are applied for thzh a;n;la);
sis of one schema, and techniques which are used to com;?a.rele sd tec}l:
Analysis techniques applicable to a single schema include

niques for: : oing)
o associating a set of déscriptors with a schema (schema index1ing);

i i the principles of
ing elements in a schema according to .
’ ﬂ;;p:olﬁesion and low coupling, which are the basis for a good
modular decomposition (schema clustering);

e creating an abstract representation of a schema, as a schema
with less details (schema abstraction).

Techniques applicable to pairs of schemas allow the comparison
of conceptual schemas, to identify similarities. The comparison of-
schemas is useful to classify schemas, e.g., to insert them in a reposi-
tory in order to facilitate their retrieval in future projects, or to iden-
tify similar schemas which can provide a basis for building reusable
components, or to retrieve in a large repository schemas representing
similar data, e.g., to reconstruct organizational processes.

Related work in the literature is available in the area of informa-

tion retrieval. Indexing techniques can be found in [24]. In the paper,
we discuss how some existing techniques have been adapted in the
conceptual modeling environment. Some specific work on similarity
has been performed within the field of reusability. In [25], techniques
for analyzing similarity of software and its specification is proposed.
The idea of providing an abstract description of conceptual schemas
has been proposed in the Entity-Relationship literature, to organize
schemas in a.repository [3] or to provide an abstract description of
schemas [17]. Relevant work in this field is also being performed by
[23] to provide generic components for domain modeling. On the other
hand, all these approaches are labour intensive, and therefore diffi-
cult to adapt to very large sets of schemas. In [10,19], we proposed
approaches to automatically cluster conceptual schemas and (semi)-
automatically abstract them for building reusable components. In
the present paper, this approach is generalized to schema abstraction
based on general criteria.
- Techniques for classifying reusable components have been presented
by the authors in the reuse contexts [8,9,15,14]. The purpose of the
present paper is also that of organizing all these techniques in a homo-
geneous framework, providing a set of techniques which can be applied
to schema analysis in general.

The paper is organized as follows. In Section 2, we discuss tech-
niques for associating keywords with schemas. In Section 3, we present
techniques for (semi-)automatically building an abstract representa-
tion of schemas, based on clustering principles. In Section 4, we discuss
problems related to the identification of similarities between schemas.
Finally, in Section 5, we discuss applications of our techniques in the
domain of reuse, and to the analysis of large sets of schemas.

—

2 Schema indexing

In this section, we describe our techniques for indexing a schema, that
is, for associating with the schema a set of descriptors, capable of
describing the contents of the schema at a more abstract level.

To the aim of defining techniques that are applicable to several
conceptual models, we consider a conceptual schema § as a set of
elements, that is, S = {E1,-- - E,}, where elements correspond to the
constructs of the conceptual model used for defining §. For example,
with reference to the Entity-Relationship model, elements of a schema
are the entities and the relationships.

In our approach, descriptors are selected among the names “of
schema elements, using weight-based techniques. Descriptors can be
single names or pair of names, called features, selected for their ca-
pability of describing the schema subject and contents in a suitable
way. For descriptor selection, we adopt both a syntactic and a contex-
tual approach. We consider the structure of elements in a schema to
determine the relevance of elements and, consequently, select the rep-
resentative elements (syntactic approach). Contextual considerations
are taken into account by defining alist of features with an associated
fuzzy weight, expressing the relevance of the features. In order to man-
age synonyms, homonyms, and other situations that can emerge from
heterogeneous naming disciplines and jargons, we rely on the avalil-
ability of a Thesaurus, where terms and relationships among terms are
stored in a structured way. The probelms related to the construction
and the maintenance of a Thesaurus are discussed in [10,14].

In the following, examples are given using the “Concept Model”,

an extended Entity-Relationship model defined by SISU within the.

F3 project [16]. In Sect. 2.1 we illustrate the technique defined for
selection of representative elements, and in Sect. 2.2, the technique
used for selecting features for a given conceptual schema.

2.1 Reprgsentative elements

Representative elements are chosen as schema elements able to rep-
resent the content of a schema (portion), and their names become
schema descriptors [10]. The identification of the representative ele-
ments for a given schema S is based on the following steps: '

60

Si T
Name
Address
fulfill; provide s
receive
- refers-to refers-to
Orde Supply Payment
Code Code Code
Date Quanti
riorit my -

makes

Figure 1: The “Supply Management” schema

q ly flﬂformatlon Lp E Or eax element belOIl
.the uantity o (,)fl' Ch lmn E‘ glng

) : azt;;eshold is defined for selecting the representative elements
. .on the computed quantity of information.

T . .
ment_o l;:f).mp\xte the quantity of information W(E;) carried by an ele-
: in a schema, we consider the following structural aspects:

e Numb i
N lzlen;hzr E;ti;oﬁgzs of hjE,-, Ayot(E;); when considering models
: - ionship models, the number of attributes i
. : tes
cNons1dered. In Fig. 1, properties are shown in the element boxelss
. WEmber of hlnks of ?.' to other elements in the schema, L;y;(E;);
b e:dﬁgyz$g Fintlty-Relationship schemas and con(’:epto 1:mo'd’
; lons . 0 e . . .]
sy ps linking entities and is-a hierarchies are consid-

W (E;) is computed as follows:

W(E.) = Atot(Ei) + L!ot(El')

61

The rationale is that the number of properties and links of an
element can be used as a (heuristic) measure of its relevance within
the schema. The greater this measure, the higher the relevance, since
it is characterized by several properties and it is referred to by several
elements of the schema.

To choose the representative elements in a schema §, based on
W(E;), a threshold T is computed for S as the average quantity of
information of the elements belonging to §. The elements for which
W(E;) is greater than or equal to the threshold T are selected as
representative elements.

Additionally, in conceptual models allowing the representation of
is-a links between elements, the choice of representative elements is
also based on the participation of elements in is-a links. In particular,
a satisfactory criterion is that of choosing all elements which have a
descendant in an is-a hierarchy. In fact, usually leaf elements in is-a
hierarchies turn out to be too schema specific to be a good basis for
schema comparison and abstraction.

For instance, in Fig. 1, an example of conceptual schema is shown,
related to “Supply Management”, defined according to the concept
model of F3 [16]. This conceptual model is basically a semantic net-

work model, allowing the representation of concepts and relationships

between concepts. The “Supply Management” schema in Fig. 1 rep-
resents the concepts involved in good supplying (such as suppliers,
supplies, orders and clients, payments) and their relationships. When
applying the formula previously illustrated to the schema of Fig. 1, we
have that, for example, the quantity of information computed for both
the concepts Client and Order is 6 (in fact, Client has 4 attributes
and 2 links, while'Order has 3 attributes and 3 links). The threshold
T for the “Supply Management” schema is 5.6, which is the average
quantity of information (i.e., 28/5).

The concepts that are selected as representative are shown with bold
lines in the schema.

2.2 Features

In order to perform contextual analysis of elements and detailed com-
parison of elements, we introduce the concept of “Features”. Features
are pairs of keywords ‘with an’ associated fuzzy weight expressing the
relevance of the Feature. The mechanisms of keyword pairing and of

62

fuzzy weights adds semantics to the description. Correct semantics
can be provided only via human intervention by the developer. How-
ever, Features and weights can be obtained semi-automatically, with
the protocol described here.

Contextual analysis describes the properties, structure and role of
schemas and elements taking into account the structure and charac-
teristics of all the schemas stored in the repository.

The output of contextual analysis is a description of schemas through
list of Features, allowing schemas to be indexed according to a flexible
paradigm, and to be searched and retrieved using imprecise queries.
Hence, the developer can navigate in the space of elements and schemas
by entering concepts and by finding both perfectly matching candi-
dates, and candidates that “can fit” the current needs. Fuzzy weights
are the mechanism supporting imprecision, which is used to compute
the degree of confidence of the suitability of schemas.

In detail, the mechanisms for contextual analysis are the following:

e keywords are used in pairs; a keyword pair is called a Feature;

e each Feature is weighted with a fuzzy weight, expressing how
relevant the Feature is in the description of the schema.
The fuzzy descriptor thus obtained has the following format:

list-of [Feature: fuzzy-weight]

Keywords are paired in Features under the assumption that a two-
term structure is more descriptive than usual one-term descriptions
[24], while remaining simple enough to avoid the need for a formal

‘description’vlanguage. The semantics is defined as a mapping between
sets of string pairs into fuzzy sets of weights.
A possible interpretation of Features is the following:

e “Action-Object”, where Action is a verb and Object is a noun.
In this case, we speak of Active Features describing the actions
executed by an element on other elements or on itself. An ex-
ample is “Check-Order”, a verb-noun pair, where “Check” is the
action executed on the “Order” element.

e “Category-Value”, where Category is a noun and Value is an ad-
jective, and “Element-Property”, where both are nouns. These
are Passive Features describing the properties of an element. Ex-
amples are “Priority-High”, a noun-adjective pair describing the

63

value held by the property “Priority” of “Qrders”, and “Order-
OrderCode”, a noun-noun pair describing the schema shown in

Fig. 1. o
In general, a schema is described by a Feature list, according to the
Features extraction protocol described in the following. Features are
extracted from conceptual schemas considering concepts, links, and

attributes, and are used as schema descriptors.
First, representative elements of the schema are identified, using

the method described in the previous paragraph. Then, the following
indexing steps are applied:

a) All the representative elements belonging to an is-a hierarchy are
considered, and, for each element, its key (identifying) attributes .
are extracted. The following Feature is extracted:

(Element_Name - Key_Attribute)
where Element_Name and Key_Attribute are the two keywords
paired (using the ™ ’) in a Feature.

b) A filter is applied: by examining for each representative E; the
number of links Lo in which E; participates, only those elements
are filtered whose Liot exceeds the nearest integer greater than
halfof the maximum Ly of all the representative elements. A
Feature of the form:

"+ (EiName: E;Name)
is added to thé'iii__’_ésdﬁptor, where E; varies among all elements
connected to E; . Duplications are avoided, i.e., the directions of
links are ignored.

¢) The descriptor is completed with Features constructed out of
names (if any, meaningful) of the links of the elements extracted
in the previous steps, together with their key attributes.

The Features obtained in this way can be mostly created automat-

ically. A manual inspection step can then be performed to correct
some ambiguities or odd terms due to the special jargon used in the

schema. In general, hand written Features could be more expressive

than those automaticallj extracted; however, since we consider con-

ceptual schemas, we rely on the expressiveness of terms, especially if-

these schemas are “well written”, according to some methodological
discipline that influences also the “goodness” of used terms. Instead,
the problem of adding semantics to poorer descriptions, €.g., from code

%1bra.ries, where the lexicon is bound to-hardware/software terms and
jargons, can be more serious (this problem is tackled in [14]). Her
we observe also that the Thesaurus is a valid support to the -extr o
Flon of meaningful Features, since a synonymia function filters out tahC .
influence ?f technical jargons and lexical differences. e
. Referring to the example of Fig. 1, the extraction protocol would

produce the following Features (consideri
idering the th i
elements in bold lines): § the fhree epresentative

Order-OrderCode
Client-ClientCode
Payment-PaymentCode
Order-Client
Client-Payment
Places-0fferNumber

where the first 3 Features derive from step a, the following 2 f;
srcep b (considering the connection degrees of ;he three re gres ":m
tl\fe elcf,ments)-, and the last Feature considers that the onlyI:'ela.i?oa-
ihlp with a meaningful name is “places”, and where we assume thn;

pla.ces”.has the “OfferNumber” attribute (not shown in the fi rea
. Coming to the fuzzy weighting of the Features, an al "oritliun)
signs fuz.zy weights to Features using a function a.dal,)ted frgm cl a:i
tfex? retrieval systems. The adaptation takes into account that I:SI:;:
tistical analysis can be performed on schema terms, since theys;;

_not belong;to a true corpus of text documents. The formula is the

follov_ving; p.

iz (i) - (In(3})2

‘ fvjlere W5 k is‘the weight of the k% Feature in the i** element /schema
f:lr; I:t—/:Chenl:Ia) a;dl u,;]’: ist til:l frequ;ncy of the k* Feature in that ele-
. . s the total number of descriptors in th i
:.n(il ny is the num.be.r of descriptors exhibitingpthat Fea.tlfrcr:pFosil:(:rh)z
otal number of distinct Features in the repository.
. The fuzzy weight associated with a Feature is a real number in th
interval [0,1] representing the relevance of the Feature within tlllz d:

scription, that is, “how well” the Feature describes the element char- ‘
acteristics. The fuzzy weights are used. within fuzzy logic [20] with ‘
J

standard operators (and, or, logic implication). Weights are involved

in the computation of similarity using the algorithm illustrated in [14] g
returning the Confidence Value of the similarity. §
For example, considering the Features extracted above, the weighted 2

()

belongs| to 1

fuzzy descriptor is:
order-0OrderCode:0 .8247
Client-ClientCode:0. 8247
Payment-P aymentCode:0. 8247
Order-Client:0.6044
Client-Payment:0.5012
Places-OfferHumber:O .3691

result in at least 1
fer to more than

<<
«
can

has at least
Leg of
a journey

Travel plan

can
involve 1
N

In these computations, we have considered. N = 20, each schema
described by 6 Features, a total of 120 features, of which 70 are distinct
(F= 70). Moreover, Nk has been assumed to be 2,and ik = 1, since ‘ "y
we consider only 1 context in the repository. L

Order, Client, and
tt Payment appear as the most frequent keywords and their Features
get a high value of the weight, since these elements are the most
connected elements of the schema, that is, among the most relevant

elements of the repository. \‘
|

Selouna
J\

Private

is-a
Small
package

ﬁh‘“‘"?'ﬂm Hired car
=)

OO

3 Clustering and abstraction of schemas

Schema abstraction has been proposed in the literature (eg., [3,17])
to represent the contents of a schema in a structured way, according

to different levels of detail. We proposed in [10,19] approaches to ‘
abstract schemas based on clustering of schema elements. By means <
of clustering, we partition the elements of each schema according to
criteria based on the well-known principle of “high cohesion and low
coupling”. The ob jective is to obtain highly cohesive subschemas, each
of them representing one basic and indivisible concept. By means of
abstraction, for each cluster, one schema element (or, possibly, more
than one) becomes a representative element, for the underlying basic

can involve >1

concept.
! In Fig. 2 an example of schema clustering is shown, for the “Courier, g’
! , Transportation” schema. This schema represents the concepts in- =

Fi : 4 i i
gure 2: The “Courier Transportation” schema

66
67

lan l
can involve >1 Travel p!
3

can involve >1

can refer t0 result in
more than 1] [at Jeast 1

“Courier Transportation” schema

Figure 3: Abstraction of the

volved in transportations made by couri(-irs 1(suc)h a.ji t:;:i:p::;?t::::t
i travel plans) an

delivered goods, orders and . ' F

Isrlll‘;;i s’In Fig. 3 an exa.n;ple of abstraction of the “Courier Transporta

ig. 21 “ i ortation” schema
tion” schema of Fig. 2 is shown. The “Courier Transp

. - b
i ing its elements as shown in Fig. 2, then
e e oresent for each cluster. For instance, the

hoosing an abstract representation . :
f:luster gt:'omposed by elements Travel plan, iourl:r’i\r'r‘al.:;p;:afllel:
j i ted by the element lra .
and Leg of a journey, is represen ent T i
ollowi ithm for performing schema
following, we present an algori : :
:11:; oThén v%; discuss criteria for representing clusters with abstract
: ing li lements.
ts and for abstracting links betweer_l e)
elenllznthe present paragraph, we generalize to schema analysis the
i d in [10,19] in the context of reuse. o
B ieating of aihe b]ents can be performed taking into ac-

Clustering of schema elem : L g into 2
the schema (syntactic approa) or
count the structure of the (e s b o fhe

i ments (semantic appro
- t:f:ttilclea::;'oa.ch - E.ha.t can be automatically supported - l?ut some
o -ations are taken into account on the basis of the
s section. To provide op-
roduced basic concepts of

semantic considerati . .
schema descriptors defined in the previou
erational criteria for clustering we have int

68

affinity and closeness between schema elements. Definitions of cou-
pling and cohesion between clusters are then given in terms of affinity
and closeness.

3.1 Affinity

As already said, schemas are described via descriptors, which can
either be names of representative elements or features (see Sect. 2.1
and Sect. 2.2). These descriptors can be used for computing similarity
between elements. In particular, the terms contained in the descriptors
of elements E; and E; can be examined to establish their level of
similarity, with the help of a Thesaurus. We state that two elements
E; and E; have affinity with respect to their descriptor terms, denoted
by Affinity(E;, E;), if their terms are either equal, or synonyms, or
similar, according to the relationship Synonym(ts,tx), defined in the
Thesaurus. For details about the organization of the Thesaurus with
affinity measures, we refer the interested reader to [14].

3.2 Closeness

To measure the level of closeness between elements in a schema, we
consider the number and the type of links among them. Following [26],
different types of links determine different levels of closeness among
elements. In particular, “is-a” links implies a high closeness value,
due to the parent-child relationship between a supertype and its sub-
type. According to these considerations, we assign a weight wy to
“each type of Jink, to properly assess the strength of the corresponding
relationship.
To measure the level of closeness between elements, we use a Close-
ness Coefficient, computed as follows:

nl
Closeness(E;, E;) = E wpng(Es, Ej)
k=1
where nl is the total number of types of links defined between

elements in a given model, Y3, wy, = 1, and n4(E;, E;) is the number
of links of type k relating elements E;, E;.
In computing closeness in concept models and Entity-Relationship
schemas, we have chosen w,e; = 0.4 has the weight for relationship
links, and w;s—o = 0.6 for inheritance hierarchies.

69

3.3 Coupling

We consider coupling between non overlapping portions of a schema,
which are called clusters in the following." ’

Let us consider two clusters Cz and Cy containing 7z and ny el-
ements, respectively. The measure of coupling between C; and Cy,
denoted by Coupling(Cz,Cy), 1 defined as follows:

Coupling(Cz,Cy) =

wa 0% it Affinity(E;, Ej) + wo Y E;L?_—z Closeness(Ei, E;)
ng Ny
and wa + we = 1, are weights introduced

where wa, we, With wa,we € [0,1]
d closeness coefficients between el-

to properly assess the importance of affinity an
ements for cluster coupling computation.

Note that the measure of affinity captures the knowledge on the semantic affin-
ity between elements, cither coming directly from the developer, or from the The-
saurus; conversely, the measure of closeness is based on purely syntactic consid-
erations. As a consequence, different weights assigned to affinity and closeness
vary the importance attributed to semantics with respect to syntax. In testing
our method we have privileged closeness against affinity, due to the difficulties in
gathering the knowledge on schema semantics (we normally assume w4 = 0.1 and

we = 0.9).

3.4 Clustering

The goal of the algorithm for clustering illustrated in the following is to optimise
a global measure of coupling producing 2 sub-optimal solution. In the information
retrieval context, algorithms have been proposed for document clustering, based
on measures of similarity between documents; the most widely used one [24] is
based on the construction of a matrix, called similarity matrix, of rank n, where
n is the number of documents to be clustered; element i,j of the similarity matrix
represents the value of the similarity between documents i and j; in outline, the
procedure for clustering is constituted by a series of steps, each of which consists
of the merging of the most similar pair of clusters, the deletion from the similarity
matrix of the rows and columns corresponding t0 the merged clusters and the
insertion of a new row and a new column corresponding to the new cluster deriving
from the merging. The algorithm can be adapted to schema clustering defining 2
matrix, called coupling matrix, corresponding to the similarity matrix defined for

70

docum i i i
ent clustermg. If Ci5 18 the generic element of the COIIP].iIlg matrix, and n
’ 1

and n; are the number of con
' cepts of respectively cl ;
of the coupling matrix are defined as follows: ¥ elusters (rand & Mo cloments

o cij= Coup]jng(ciacj);

e ¢;; =0.

Initially, the coupli i
pling matrix has rank n, wher
I 3 e n represents the n
cor ce;;I)n i iorf et;lf: schema to be clustered. While the algorithm proceeds a.nducrcr)l: o
ine ‘thlxo clusters, matrix elements are updated with the measure of Ct;p’fs
wi e new clusters. The algori ng

. : \ gorithm for schema cl i i
g ustering b
. é)cedurztrclzeld by tl.le mm.lb'er of clusters k that are created; confeqieilzlmpgllg
i djyc es until the initial n concepts have been grouped into & ly, y

ponding to the final rank of the coupling matrix cuters

Th i
e basic procedure for schema clustering by grouping is the following [19,24]:

1. Place each of n concepts into a cluster of its own;
)

2. P pairwi = 9
(:Onl ute a.ll alrwise (:OIlCept Concept Couphng CoeﬂimeﬂtS aﬂd

3. Whll;’: 11;he number of clusters left is greater than k do
Ce ecl:.the most similar pair of current clusters C; and Cj;
Dolm'c u}e C; al.lnd Cj into a single cluster Ciy;; .
elete from the coupling matrix th
e
st B rows and columns cor-
I
nr;sertla. new row and a new column corresponding to the
W C uster Cjy; and calculate the coupling coefficients f
. the new row and column; e
endwhile. ,

3.5 Cluster abstraction

The purpose .f the i
: o abstraction process is t i i
he purpose. o provide a description of a
e Eéiha:;t:aiﬁi Ii'efine?ts. In fact, the availability of abstract elzcmhzzltz
ification of components shared by di
y different schemas
b

a‘nd the retrie 3.1 a‘nd uIldeIStaJldlng Of Eler[lents a'nd/OI SChBIna.S, B.g., lthln a
leen a Clustered Schenla. t ore a.bSt act (o hel level epresentation is
1ts m
9 T (T hlg) represen 1

71

1. definition of abstract elements,

2. link restructuring.
As a result of defining the abstract elements, and of applying link restructur-
we call an abstracted schema, that is a high-level
composed of representative elements, connected
Abstracted schemas provide a concise representa-

ing techniques, we obtain what
description of a given schema,
through properly selected links.
tion of the key concepts of given domains.

Criteria guiding the execution of the two steps are discussed in the following,

referring to the example shown in Fig. 2 and Fig. 3.

Abstract elements _
To obtain abstract elements we select representative elements for each cluster,

according to the approach presented in Sect. 2.1, and use their names as cluster
descriptors. Descriptors become the label the corresponding abstract element.

Link restructuring
The set of links between abstract elements contains the links between initial

elements in the original schema. Sometimes, a link needs to be renamed in order
to be generalised. The correspondence between the initial name and the more
abstract one are traced in the library to enrich the knowledge about synonyms,
hyperonyms, and hyponyms in the domain. Furthermore, some types of links, for
instance is-a, do not admit cycles. Including links originally holding between single
elements of the initial schema as links between abstract elements can involve the
presence of cycles in the final schema. In this case, either the dropping or the
renaming of at least one link is compulsory.

The actions that can be performed to modify the initial set of links during

abstraction are the following:

e dropping;

e renaming;

o transformation of a subset of the links into 2 single one, called

link abstraction.
In general, the dropping of a link judged scarcely meaningful is suggested as a

first action, in order to obtain a more readable schema. Link abstraction consists of
the grouping of conceptually related links and of their transformation into a single

link. Methodological criteria for the grouping of links are the affinity between
their names, or the equality between the sets of participating entities in the source

72

schema. The definition of th‘. ink i i

B ke n of the abstract link 1s‘ma.1nly based on the names of the

o CZVnhsn sa.r.dina.lities areindicated, they can either be assigned either from scratch
e derived from those of the original links, for instance, as the union of thei ,

ranges of variability. ’ .

-4 Similarities between schemas

in gus section.we. dt.ascribe our technique for analyzing pairs of schemas in order
o discover their similarities. Similarities between a pair of conceptual schemas S;
and §; are computed by considering: ‘

° Des.criptors associated with the schemas (descriptor-based simi-
larity). This type of similarity is mainly useful when a repository
of concleptua.l schemas is maintained, for classification of schemas
according to similarity levels, and for their subsequent retrieval
through query and browsing facilities. ,

° Structu.r.e of elements within the schema they belong to (element-
v based-;fmilarity). This similarity is mainly useful when a deep
comparison of s_ghema contents is required, such as, for exam-

ple, for: x"ri_e' '_.tegration and reuse purposes. In thi,s contexts

t'he user is interested in analyzing the structure (that is proper-’

'txes) and the context (that is, the relationships) of the e,lements

in ord(.er to discover overlapping and similar characteristics t(;

be ma.l{lta.ined in the integrated schema [21], or to be pro érl

o generahfed in a proper reusable component [16]. e

4.1 Similarity v‘b_aﬂsec_l on descriptors

21:: lfii;a’:(c:’ll:xptor-bfa.s;zddsimillléz.i'ity of a pair of schemas considers the affinity between
s associated with the schemas [8]. The greater th i
e b Bk - greater the number of descriptors
5 gher the descriptor-based similarit,

_ : y between schemas.
l’ls‘htti1 :neDt.rlc ,wef use t.o m[e2a2s]ure descriptor-based similarity between a pair of schema:s
ice’s function which considers the number of i
e It e m;ﬂ hic umber of descriptors presenting
v tipli i
g ip ed by two, over the total number of descriptors in

The descriptor-based similarity coefficient of a pair of schemas S; and S;, de
i) de-

| noted by DSiin(Sg, S;) is computed as follows:

73

DSzm(Si,SJ) ~ 1 D(S) |+ | D(S;) |

where | X | indicates the cardinality of set X, and D(S:) n D(5;) is the set
composed of the pairs of descriptors of S; and §; which have affinity (see Sect. 31
Note that each descriptor of §; and §; can participate at most in one pair.

The Dice’s function returns a similarity value in the range [0,1]. The value 0
indicates absence of similarity, that is, no descriptors of S; and S; present affinity.
The value 1 indicates identity, that is, all descriptors of §; and S; present affinity.
Intermediate values indicate situations of more or less simialrity, depending on
the number of descriptors. The more the descriptors with affinity, the greater the
similarity coefficient. To determine the descriptor-based similarity coefficient, all
descriptors of S; and S; are submitted to pairwise affinity comparisons (with the
help of the Thesaurus), and their affinity coefficients are computed.

For example, let us consider the “Supply Management” schema, shown in Fig.1.
We compute the descriptor-based similarity between the “Supply Management”
schema and the portion of the “Courier Transportation” schema in Fig.2 con-
taining the-Order, Invoice, and Customer elements. Under the hypothesis that
Order, Invoice, and Customer are all representative within the “Courier Trans-
portation” schema portion, the descriptor-based similarity between the “Courier
Transportation” and “Supply Management” schema portions is equal to 1. Indeed,
all their descriptors have affinity, being equal (i.e., Order and Order), or synonyms
(i.e., Invoice and Payment, Customer and Client). Under the hypothesis that
only two elements are representative for the the Order, Invoice, and Customer
schema portion, the descriptor-based similarity of the considered schema portions
would be 0.8.

4.2 Similarity based on elements

The element-based similarity of a pair of schemas considers the affinity between the
structure and the context of elements in the schemas [9]. The greater the number
of elements that present affinity, the higher the clement-based similarity between
schemas. To compute the level of affinity between schema elements, we must
take into account the structure of elements within a conceptual schema, and, in
doing this, we must be as general as possible, in order to define affinity coefficients
applicable to several conceptual models. For this purpose, we consider an element
in a schema characterized by structural properties, corresponding to constructs
used in conceptual models for describing real-world object properties; behavioral

74

proper.tzes, corresponding to constructs used in conceptual models for describin
operations on real-world objects; and links, corresponding to constructs used ig
conceptual models for describing relationships between real-world objects AfﬁnitIl
between elements is then computed by considering the affinity between tht;ir nam '
(see 'Sect. 3.1, the number of their structural and behavioral properties which h -
afﬁm.ty, and the number of their links which have affinity, using again the Dica:’e
metrl.c [22]. To measure the affinity between structural and behavioral pr ti i
and links we define a set of affinity coefficients. properEn
- Let E; and E; two e]eme.nts belonging to schemas S; and S;; let SP(Ey) be
the set of stfuctura.l properties of element Ej; let BP(Ej) be the set of behav
1ora.1‘ }?ropertles of element Ej; let L(Ej;) be the set of links in which element E-
ia.r‘?lclpates. tI‘he Stru(itural Affinity coefficient, denoted by SA(E;, E;), the Be,f
a,v1or.al Affinity coefficient, denoted by BA(E;, E;), and the Conte;(tllja.l, Affinit
coefficient, denoted by CA(E;, E;), are computed as follows. v

2| SP(E;NE;) |
| SP(E;) | + | SP(E;) |

SA(E;, E;) =

BA(E, E;) = I BPENE)) |
| BP(E;) | + | BP(E;) |

CA(E, B;) = —2 I LB N E)) |
VT TLE) |+ | L(E) |

:;;;;;JEXDI én;il;a.(’;fs the cardinality of set X, and SP(E; N E;), BP(E; N Ej)
; N E;) indicate the pairs of structural properties, behavi operties
and links, respectively, which have affinity i e foogiret i ey
. . ; nity in both E; and E;. To determine
: . th
ialﬁirm:;ly be;\ive%n pr(;perty and link names we use the na,me—bas:ed affinity coefﬁcieni
oduced in Sect 3.1. Since properties are characterized al i
defined affinity conditions for primiti o g e o
: primitive and complex domain descri i
In brief, two primitive domains h ity i e L
ave affinity if they are the same d i i
one of them is included in the other; ¢ iy 4s
. omplex and reference domai ity i
determined on the basis of the affini ’ i g i
nity of th imiti i
determined on the © y e involved primitive domains, through
. rEa.cht aﬂiglity coefﬁcien‘t ‘can assume a value in the range [0,1]. The value 0
ﬁcli)eziin ‘:hz?l s;:ﬁce :}' a.ﬁimty (no affinities exist between E; and Ej for that coef
, while the value 1 represents a situation of identi ' _
o . ' entity (E; and E; are equall
efined in both schemas, according to the coefficient considered). {ntermgdiat)e,

75

\ffini . and E; in their
values describe situations of greater or less affinity between E; and Lj

resPF‘fC:i‘; ﬁ‘;“&?;he Global Affinity coefficient, GA(E;, E;), is computed as the
or E; £

weighted sum of the affinity coefficients, that is,

iaE' = ’ ' ‘ B
?ul:&}?ﬂ?ni:g)(E;,Ej) + 'wSASA(E.',Ej) -+ UJBABA(E.,EJ) + weaCA(E E;)

wea > 0,and wa+wsA+WBAY

i WSA, WBA !
where Wy, WSA, WBA, WCA, With WA, WSA, WBA, ad ot iy

wo g =1, are weights introduced to properly set the impor
e

coeficen

¢ within the global affinity. . o
Give 'ht : g:il:l of sclglemas S; and Sj, their elements are submitted to pairwise
iven’

affinity comparisons. An affinity threshold T is defined, and only th; elem.e(;l:rgg.\:(s)
havI;il; a Global Affinity greater than or equal to T' are selected and consi

‘ il - and S
Jlement-based similarity of S; an Si - i
Coml?e‘i.teEt(l.;'i;EZn:he set of elements contained in schema Si. The element-base

Q. G s
similarity coefficient of a pair of schemas S; and §;, denoted by ESim(S;, ;) i

computed as follows:

21 (E(S)NE(S)) |
ESim(S::5i) = TE@) | + 1 E)) |

n e’ irs of elements of S; and S

N E(S;) is the set: comppsed of the pe?.u's o

wwlrlheorsee Ea.fﬁ(sn‘i)t is"(eja)ter than or equal to the established threshold T'. Note that
y 18 gF -€q

each element of S; and §; can participate at most in one pair.

5 Exp erimentation

ort -
Reu;enslzf{l’odology for creating reference components has been proposed as an €

. . it

ample of application of the techniques discussed above in the (l:)ontex:l o:s r:u::l;ltlilné
A reference component can be use

by i i o] similar to applications developed before,

i developing new applications, ‘
ft(::;tefg;zn:i;eg tIl’le greuse paradigm to the early development phases. To derive a

ibing similar

reference representation, that is a schema fragment ;Tiléabh; (;ici;snc;;ibl:;gsimﬂui_

representative clements in an integrated way, capability c;l - —

it components is required. Indeed, it frequentl)f appen e
Zﬁ:cl:::;wiesel:iescribed in more than one schema, due to either the overlapping

requirements between schemas, or to

76

different perspectives in the development

of schemas. The idea is that similar components in abstracted schemas should
be represented into a single reusable reference component. For the definition of
an integrated representation for a given reusable component view integration and
restructuring techniques can be applied [2,18,5].

The methods and tools to support reuse have been developed by the authors
within two ESPRIT Projects (ITHACA and F®), and a CNR Project L.R.C. (In-
fokit). Research on reuse has focused both on storing reusable components in
a repository and therefore providing support to retrieve them, and on building
reusable conceptual components, from an in-depth analysis of schemas available
from previous applications.

Two tools have been developed to support reuse:

e RECAST (Requirements Composition and Specification Tool),
developed within the ITHACA and Infokit projects, supports
application developers in builing object-oriented specifications
of applications by composing reusable conceptual components.
In RECAST, the techniques for the schema indexing described
in Sect. 2.2 are applied; the features are used as a basis for
retrieving interesting reusable components, giving their desired

characteristics and performing fuzzy queries on aSoftware Infor-
mation Base [6]. . '

EXTRACT, developed during the F? and Infokit projects, pro-
vides support to building reusable conceptual components (using
an extended Entity-Relationship model) by classifying schemas
and components to find closely related elements [5,11]. In EX-
TRACT, representative elements (see Sect. 2.1) are associated
o to schemas to describe them; schemas are then classified accord-
ing to'their similarity computed as in Sect. 4 in schema clusters.
From each schema cluster, an analysis is performed on their ele-
ments to identify similar components, based on the element com-

parison techniques between representative elements illustrated in
Sect. 4.2.

Analysis of large repositories

An application of techniques for indexing and analyzing schemas is now un-
der study based on a large library of Entity-Relationships schemas in the Public
Administration domain in ¢ollaboration with AIPA (Autorita per I’Informatica
nella Pubblica Amministrazione) [13]. In this project, schemas are classified using
representative elements, with the objective of supporting information flow recon-
struction. An application of feature extraction and use is also being developed to

77

provide support to navigation in the repository via imprecise queries.

6 Concluding remarks

In this paper we presented criteria and techniques to support schema analysis
according to both syntactic and contextual aspects of the contained elements.
Similarity criteria and metrics apt to compare schemas and schema elements for
defining their degree of closeness have been defined. Clustering techniques to par-
tition elements of a schema according to their level of closeness, and abstraction
techniques to represent cluster information contents by means of abstract elements
have been presented. These tools have been conceived to be used in the informa-
tion system engineering and re-engineering processes [5,10,13]. The main challenge
in this area is to develop and adopt better abstraction and standardization mech-
anisms for design and, possibly, reuse. Major motivations for abstraction and
standardization are related to the necessity of reducing the development efforts
and costs of system evolution by establishing sound reference frameworks. Since
in these processes major difficulties are usually related to the requirements formal-
ization efforts, our choice has been to provide criteria and techniques for analysing
conceptual schemas and building a library of reference schemas availabe for reuse
purposes or for validating schema evolution.
The proposed concepts and techniques together with the supporting tools have
been experimented in the reuse area within the ESPRIT Project F® (From Fuzzy
to Formal) in the “Transportation” domain. Furthermore, their application in the
re-engineering area is being partly investigated in the framework of a project with
the Information System Authority for Public Administration (AIPA) which has
the task of planning and controlling the development of Information Systems by
promoting their standardization and integration.

Acknowledgements
The authors wish to thank Chiara Francalanci for her collaboration on the defini-

tion of clustering techniques.

Part of this work has been supported
Fuzzy to Formal) and by Information
(ATPA).

by the ESPRIT III Project n. 6612 F3 (From
System Authority for Public Administration

Appendix

Coefficient Description
S schema e
E;, E; elements in a schema
W(E;) quantity of information carried by an element FE;
in a schema 1
Aot (E;) number of properties of E;
Liot(E;) number of links of E; to other elements in the schema
T threshold for selection of representative elements
Wi k fuzzy weight of the k™" Feature
with respect to the it* element/schema o8
Vik frequency of the k** Feature
in the i element/schema
N number of all the descriptors in the repository
. 7;;5 nur:lber of descriptors exhibiting Feature k
; total number of Features in th i
Affinity(E;, E;) | affinity value between elemen’cse EP:;ECEY_
Synonym (s, tx) | relationship between terms tj, and #; in tile Thesau
Closeness (E;, E;) | closeness value between elements E; and Ej =
Wy weight associated with link type k : [0,1
Wrel weight associated with ER relationship links (’) i
Wis—g weight associated with ER inheritance hierarchies .
nk(E;, E;) number of links of type & relating E; and E; =
- nl total number of types of links 1 ’
Cz, Cy clusters
Nz, Ny number of elements in a cluster
Coupling(Cy,Cy) | measure of coupling between C; and C,
w,A weight to assess the importance of a.ﬂinyity 0
- inv the computation of coupling (h [0’11]
“wa wqiht to assess the importance of closeness ere[O. 1}
. - | in the computation of couplin ’
DSim(S;, S;) descriptor-based simila.ritypcoegfﬁcient e
of a pair of schemas 5; and 5 o1
D(S;) set of descriptors of schema SJ
SA(E;, E;) Structural Affinity coefficient l
BA(E;, E;) Behavioral Affinity coefficient -
CA(E;, E;) Contextual Affinity coefficient 0
SP(Ey) set of structural properties of element Ej -
BL}Z%E,;) se: oi‘ })eha.vioral properties of element Ej,
" set of links in which elem ici
» GA(FE;, E;) Global Affinity coeﬁicientent B precpete
wSA,.wBA, wca | weights to assess the importance of affinity coefficient
ESim(S;,S;) element-based similarity coefficient — 8’1

E(S))

set of elements in a schema 3;

References

(1] P. AIKEN, A. MUNTZ, R. RicHARDS, “DoD Legacy S).'stems
- i{everse Engineering Data Requirements”, Communications of
the ACM, Vol.37, No.5, May 1994. '

[2] C.BatiNi, M. LENZERINI, S. NAVATHE, “A CompreheI'ISl\;e
Analysis of Methodologies for Database Schema Integration”,
ACM Computing Surveys, September 1986.

“Structuring Prim-
3] C. BaTiNI, G. D1 BATTISTA, G. SANT({CCI,. 4

. itives for a Dictionary of Entity Relationship Data Schemas',
[EEE Transactions on Software Engineering, Vol.19, No.4, April
1993. ' | |

[4] H.W. Beck, T. ANWAR, S.B. NAVATHE, “A conceptual clus-
tering-algorithm for database schema design”, IEEE Trans. on
.me’léd‘ge and Data Engineering, Vol. 6, No. 3, June 1994.

5] ‘ﬁi.ﬁi-:i.mzom, S.CASTANO, V. DE ANTONELLIS, M..G.”F‘chi

N1, B. PERNICI “Requirements Reuse in the F3 project”, I

Journal, Vol. 2, No. 6, 1994.)
PERNICI, “Reusing specifi-

6] R. BELLINZONA, M.G. FUGINI, B. , '
= cation in OO applications, IEEE Software, March 1995, in press.

[7] M. L. BrRoDIE, M. STONEBRAKER, “DARWIN:”On the I;cr:—
mental Migration of Legacy Information Systems”, DOM ech-
nical Report, TM- 0588-1 0-92-165, GTE Laboratories Incorpo-
rated, November 1992.

(8] S.CasTANO, V. DE ANTONELLIS, B. ZONTA, “(’Ila.ssifyingcand
Reusing Conceptual Schemas”, in Proc. of ER’92, Int. onf.
on the Entity-Relationship Approach, Karlsruhe, LNCS, n.645,
Springer Verlag, October 1992.

[9] S. CasTANO, V. DE ANTONELLIS, “A Constructive Approach to
Reuse of Conceptual Components, in Proc. of 2nd ACM/IEEE
Int. Workshop on Software Reusability, Lucca, Italy, March 1993.

[10] S. Castano, V. DE ANTONELLIS “Sta.t}da.rd-Driver;gRI};-
engineering of Entity-Relationship Sche.ma.s , in Proc. of 4
18th Int. Conf. on the Entity-Relationship Approach, Manchester,
UK, December 1994, Springer Verlag.

80

[11] S. CasTaNO, V. DE ANTONELLIS “The F® Reuse Environment
for Requirements Engineering”, ACM SIGSOFT Software Engi-
neering Notes, Vol.19, No.3, July 1994.

[12] S. CasTaNo, V. DE ANTONELLIS, “Reuse in Object- Oriented
Information Systems Development”, in Proc. of ISOOMS’94,

Int. Symposium on Object- Oriented Methodolgy and Systems,

Palermo, Italy, September 1994, Springer Verlag.

[13] S. CasTtano, V. DE ANTONELLIS, B. PERNICI “Building
Reusable Conceptual Components in the Public Administration
Domain”, in Proc. of SSR’95, ACM SIGSOFT Conference on
Software Reuse, Seattle, USA, April 1995.

[14] E. Damiani,. M.G. Fucini, “Automatic thesaurus construc-
tion supporting fuzzy retrieval of reusable components”, in Proc.

ACM SIG-APP Conf. on Applied Computing (SAC95), Nashville,
February 1995.

[15] V. DE ANTONELLIS, S. CAsTANO, L.VANDONI, “Building
reusable Components Through Project Evolution Analysis”, In-
formation Systems, Vol.19, No.3, 1994.

[16] F3 ConsorriuM, “F® Reference Manual”, ESPRIT Project Re-
port, December 1994.

(17] P. FELDMAN, D. MILLER, “Entity Model Clustering: Struc-

turing a Data Model by Abstraction,” The Computer Journal,
Vol.29, No.4, 1986.

. [18] C. FrancaLaNcI, B. PErNIcI, “View Integration: a Survey of
_Currefit Developments”, Technical Report, Politecnico di Milano,
September 1993.

[19] C. FraNcaLaNci, B. PERNIcI, “Abstraction levels for entity-
relationship schemas”, in Proc. of 18th Int. Conference on the

Entity-Relationship Approach (ER ’94), Manchester, UK, De-
cember 1994.

[20] G.J. KLIR, T.A. FLOGER, Fuzzy sets, Uncertainty, and Infor-
mation, Prentice Hall, Englewood Cliffs, 1988.

[21] P. JOHANNESSON, “Schema Standardization as an Aid in View
Integration,” Information Systems, Vol.19, No.3, April 1994.

[22] Y.S. MaAREK, D.M. BerRry, G.E. KAISER, “An Information
Retrieval Approach For Automatically Constructing Software Li-

81

braries”, IEEE Transactions on Software Engineering, Vol.17,

No.8, August 1991.

(23] N.A. MAIDEN, A.G. SUTCLIFFE, «Exploiti
cations Through Analogy,” Communications
N.4, April 1992.

[24] G. SavLTON, Automatic Text Processing -
Analysis and Retrieval of Information by
Wesley, 1989. '

[25] G. SPANOUDAKIS, P. CONSTANT
logical Software Reuse: A Concep
Proc. of CAiSE 93, Int. Conf. on Ad
Engineering, Paris, June 1993.

[26] T. J. TEOREY, G. Wei, D. L. BoLTON, J. A. Koenig, “ER

Model Clustering as an Aid for User Communication and Doc-
umentation in Database Design”, Communications of the ACM,

Vol. 3, N. 8, 1989.

ng Reusable Specifi-
of the ACM, Vol.35,

The Transformation,
Computer, Addison-

opouLos, “Similarity for Ana-
tual Modelling Approach”, in
vanced Information Systems

